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ABSTRACT: This publication introduces a new mathematical model to describe a defin-
itive relationship between constant strain-rate, creep, and stress-relaxation analysis
for viscoelastic polymeric compounds. This new concept is especially significant since it
adequately describes all the important characteristics of both creep and stress relax-
ation in the same model. In particular, all three phases of creep (i.e., primary, second-
ary, and tertiary) can be described adequately using this model. This new model for
polymeric materials also indicates that yielding for constant strain-rate measurements
and the inception of tertiary creep appear to be directly related and may, in fact, be
manifestations of the same phenomena. The initial buildup of stress followed by the
drop off in stress as a function of time for stress relaxation is also adequately described.
This new formulation approach also offers a reasonably simple process in which to shift
from a constant strain-rate configuration to a creep calculation or stress-relaxation
configuration without changing formulation considerations. Most importantly, this
model can be used to make a transition from one of these stress-configuration modes to
another without stress or strain discontinuities. It is hoped that this analysis approach
will open new doors for the design of plastic products for both short-term and long-term
applications. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 527–540, 2001

Key words: stress versus strain; constant strain rate; creep; stress relaxation; vis-
coelastic/polymeric materials

INTRODUCTION

Many authors have previously addressed models
to predict the very practical viscoelastic mechan-
ical properties of polymeric materials that include
creep,1,2 stress-relaxation,3 and constant strain-
rate measurements.4–7 However, with the advent
of the extended use of finite-element analysis
with polymeric compounds8 and composites,9 a
simple analysis approach that relates all three of
these separate processes in a simplified mathe-
matical approach has been particularly needed in

recent years. This is particularly true since many
applications for polymers and polymer formula-
tions are often subjected to different types of
stress configurations in the course of a given ap-
plication analysis. For example, a gasket or a seal
may be subjected to a simulated constant strain-
rate operation when the gasket or seal is in-
stalled, but then it must function in a stress-
relaxation mode for the rest of its life. While some
limited efforts have attempted to describe two or
more of these processing techniques in a unifying
formulation,3,10 most of the effort over the years
has been to simulate uniaxial creep,1,2 stress-re-
laxation,3 or constant strain-rate data4–7 sepa-
rately. A very simple technique to approximate all
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three in one simulated approach is not currently
apparent in the literature. This study will ad-
dress a new analysis approach to represent all
three of these measurements on a typical plot of
stress versus strain for a series of constant strain-
rate measurements. This new evaluation process
will then address an estimate of creep, stress-
relaxation, or a constant strain-rate analysis as
required for a given application.

Stress Versus Strain at Constant Strain Rate

The effect of a series of tensile strain rates on the
stress versus strain curves of a typical polyethyl-
ene is indicated in Figure 1. These tensile data
were generated on an MTS Q-Test universal test-
ing machine using injection-molded polyethylene
dog-bone samples prepared and supplied by West-
lake Polymers. The polymer used was a Westlake
high-density polyethylene (0.954 g/cc) designated
as HM4000AA with a melt index of 6.8 (ASTM
D1238 condition 190°C/2.16 kg). An extensometer
was used to evaluate strain more accurately for
these stress–strain curves.

Some specific points of interest that can be
gleaned from the results in Figure 1 include

● The yield strength and modulus were both
found to increase with an increase in the
strain rate.

● The elongation to yield varied only slightly as
the strain rate was varied over wide ranges.

These results illustrate several of the concepts
indicated in the model to be developed in this
study. A more complete development of the poly-
ethylene experimental results indicated in Figure
1 will be submitted in a later publication follow-
ing the theoretical concepts introduced in this
study.

The results shown in Figure 2 were generated
using the model to be developed in this study. The
constants used to plot the results in Figure 2 were
found to be characteristic of representative ABS-
formulated polymeric materials. Note that the
general shape of the curves in Figure 2 are simi-
lar to the experimental results indicated in Fig-
ure 1. Consequently, the results in Figure 2 will
be used to illustrate the theoretical concepts to be
developed in this study.

Since stress relaxation is defined as the change
in stress as a function of time required to main-
tain a constant level of strain, then, conceptually,
stress relaxation could be developed from the data

Figure 1 Stress versus strain at different strain rates for polyethylene.
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in Figure 2 by connecting the locus of points on all
of the stress-versus-strain curves at the same
strain level (« 5 0.02) as indicated. Similarly,
since creep can be defined as the change in strain
as a function of time at constant stress, then a
uniaxial creep curve should also be able to be
developed from all the points indicated as a
straight line at a constant stress level (i.e., s
5 300 psi) shown in Figure 2.

Strain-to-Yield Considerations

To more clearly delineate the processes of stress
relaxation and creep as indicated in Figure 2, it is
initially informative to address the strain at yield,
«y, for constant strain-rate measurements. Pre-
liminary experimental measurements by this au-
thor as well as others in the literature3,10 have
found that the strain at yield, «y, generally has
been found to be a linear function of the charac-
teristic strain rate, «̇i, for constant strain-rate
measurements as

«y 5 «` 1 a«̇i (1)

where «` is the limiting strain to yield when the
strain-rate approaches an infinitely small value
(«̇i 3 0) and a is simply a small proportionality
constant. Brown5 was one of the first to describe a
relationship of the type indicated by eq. (1) after
first proposing the following general relationship
between stress and strain for an ideal solid:

s

t«

1 ṡ 5 EuS «

ts

1 «̇D (2)

where Eu is the unrelaxed modulus; ts, the char-
acteristic relaxation time for creep at some stress
s; t«, the characteristic relaxation time at some
strain «; s, the stress; ṡ, the applied stress rate; «,
the strain; and «̇, the applied strain rate. Two
forms for eq. (1) were obtained by starting from
eq. (2) with different assumptions. The first rela-
tionship at the yield point was found after making
the following assumptions at the yield point:

If «̇ 5 constant and ṡ 5 0 at the yield point,
then eq. (2) simplifies to

«y 5 S sy

Eu
DSts

t«
D 2 «̇ts (3)

Figure 2 Calculated stress versus strain at various strain rates using model from this
study with indications of examples for creep and stress-relaxation contributions.
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However, if ṡ 5 «̇s at the yield point, then eq. (2)
simplifies to

«y 5 S sy

Eu
DSts

t«
D 2 «̇tsS1 2

sy

Eu
D (4)

Both eqs. (3) and (4) predict that the constant a
would be negative. Brinson and DasGupta3

pointed out that Crochet11 predicted, theoreti-
cally, that the yield strain should decrease with
increase in the strain rate. For the results in-
dicted in Figure 1, it is apparent that a is indeed
negative for this polyethylene data. However,
Malpass10 and this author found that for most
ABS materials the strain to yield increases as the
strain rate increases, which would make a posi-
tive. In addition, Brinson and DasGupta3 also
found that, experimentally, the yield strain in-
creased with increase in the strain rate for poly-
carbonate.

Brown5 also rearranged both eqs. (3) and (4) to
yield the following:

S sy

Eu
D 5 «ySts

t«
D 1 t««̇ (3A)

S sy

Eu
D 5 1«ySts

t«
D 1 t««̇

1 1 t««̇
2 (4A)

Note that for both eqs. (3A) and (4A) as «̇ 3 0
the term sy/Eu approaches a constant value.
Brown5,12,13 indicated in several articles that
within a given class of polymers, and particularly
for the same polymer formulation, that the ratio
of sy/Eu is approximately a constant. In addition,
both Buchdahl6 and Robertson14 also indicated
that the ratio of the yield strength to the elastic
modulus is approximately a constant for similar
polymer formulations.

Development of a New Model Relating Constant
Strain-rate, Creep, and Stress-relaxation
Measurements

Based on the considerations already presented, it
is proposed that the most general equation to fit a
stress–strain curve can be written as

s

sy
5

A1E«

sy
1 A2~K«!2 1 A3~K«!3

1 A4~K«!4 1 An~K«!n (5)

or

s

sy
5 K« 1 A2~K«!2 1 A3~K«!3

1 A4~K«!4 1 An~K«!n (5A)

where K 5 A1E/sy ' constant for a series of strain
rates for the same polymer formulation and A2,
A3, . . . Ai 5 variable constants for a series of
strain rates for the same polymer formulation.

As «3 0, then the limiting slope, syK, of eq. (5)
approaches the modulus, E, when

syK 3 A1E 3 E as A1 3 1 (6)

The strain, «, in eq. (5) should be positive in a
tension mode and negative for the compression
mode. The analysis in this study assumed the
strain, «, to be positive and in a tension mode. The
required modifications for the compression condi-
tion will be left to the reader.

At this point, it can easily be shown that the
exponential

s

sy
5 1 2 exp~2K«! (7)

is one of the simplest equations consistent with
the infinite series described by eq. (5). However,
one major disadvantage of eq. (7) is that it does
not have a well-defined or a finite yield point.
Therefore, the example to be discussed in some
detail in this article will use only the first three
constants in eq. (5) as

s

sy
5 K« 1 A2~K«!2 1 A3~K«!3 (8)

If it is assumed that A1 5 1.0, then K 5 E/sy,
which, according to Brown5,12,13 and several other
authors,6,14 is normally a constant for a given
polymer formulation that typically ranges from
40 to 60. Again, the ratio of the modulus to the
yield stress for the polyethylene indicated in Fig-
ure 1 generally had an average value of K 5 45.2,
which is very consistent with the results found by
others. Some recent measurements15,16 of the
modulus and yield strength for several polymeric
materials are shown in Table I. In general, the
average value ratio of the modulus to tensile
strength for these data does appear to be reason-
ably consistent with the general guidelines indi-
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cated by Brown. The two other conditions re-
quired to evaluate the constants A2 and A3 in eq.
(8) would include the following:

By definition: s 5 sy when « 5 «y.
Second condition: ds/d« 5 0 at s 5 sy

when « 5 «y.
Using these conditions, it can be shown that if K«y
# 3

A2 5
~3 2 2K«y!

K2«y
2 (9)

A3 5
~K«y 2 2!

K3«y
3 (10)

Thus, if [d(s/sy)]/(d«) 5 0 and if K«y # 3, then the
two extrema at « 5 «1 and « 5 «2 can be found to
yield a maximum at

s1 5 sy at «1 5 «y (11)

and a minimum at

Table I Measurements of Modulus and Yield Strength for Several Polymeric Materials

Polymer Modulus, E
Yield

Strength, sy

Ratio K K 5 E/sy ReferenceRubber-modified OSA Polymers (Mpa) (Mpa)

Sample A 1500 35 42.9 15
Sample B 1400 30 46.7 15
Sample C 1200 23.7 50.6 15
Sample D 1450 29 50.0 15
Sample E 1600 32.5 49.2 15
Sample F 2400 41.5 57.8 15
Sample G 2350 43.5 54.0 15
Sample H 1450 30 48.3 15
Sample I 1500 30.6 49.0 15
Sample J 1000 21.6 46.3 15
Sample K 1800 35 51.4 15
Sample L 1400 28.6 49.0 15
Sample M 1850 34 54.4 15
Sample N 2250 43.5 51.7 15
Sample O 1600 26.5 60.4 15
Sample P 1900 26.7 71.2 15
Sample Q 1000 16.7 59.9 15

Average 52.5

High-temperature Thermoplastics (ksi) (ksi)

Polyimide 580 16 36.3 16
Polyimide 540 17.3 31.2 16
Polyimide 546 14.8 36.9 16
Polyetherimide 430 15.2 28.3 16
Polyamideimide 400–667 9.2–13.0 43.5–51.3 16
Polyarylimide 460 15 30.7 16
Polyimidesufone 719 9.1 79.0 16
Polysulfone 360 10.2 35.3 16
Polyarylsulfone 310 10.4 29.8 16
Poly(arylene sulfide) 470 14.5 32.4 16
Poly(phenylene sulfide) 630 12 52.5 16
Poly(ether sulfone) 380 12.2 31.1 16
Poly(ether ketone) 580 16 36.3 16
Poly(ether ether ketone) 450 14.5 31.0 16
Poly(arylene ketone) 360 12.7 28.3 16
Liquid crystal polymer 2400 20 120.0 16

Average 42.9
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s2 5 sySK2«y
2~4K«y 2 9!

27~K«y 2 2!2 D at «2 5 «yS K«y

~3K«y 2 6!D
(12)

Note that «1 5 «2 5 «y when K«y 5 3. This is
clearly shown in Figure 3, where («2/«y) is plotted
as a function of K«y. Similarly, note that s1 5 s2
5 sy when K«y 5 3 as indicated in Figure 4, where
(s2/sy) is plotted as a function of K«y. It is also
clear that s2 # s1 5 sy as long as K«y # 3. It is
also very clear that if K«y . 3 additional changes
need to be made to the formulation included in
the main body of this article. For completeness,
the primary formulation modifications to achieve
the primary objectives indicated in this study
when K«y . 3 are summarized in the Appendix.
Using the principles discussed here, the special
case summarized in the Appendix can be modified
to address the constant strain rate, creep, and
stress relaxation with little disruption in content.

Another relationship between stress and time
can also be introduced by noting that the stress
relaxation of the yield point can be addressed

using the following simple relationship currently
included in ASTM D2837 –98a ( Standard Test
Method for Obtaining Hydrostatic Design Basis
for Thermoplastic Pipe Materials):

sy 5
b

ty
n (13)

where sy is the yield point; ty, the time to yield;
and b and n, constants. This relationship was also
used by Reinhart17 to predict long-term failure
stress (which is normally close to the stress eval-
uated from the stress relaxation of the yield
stress) as a function of time.

The calculated values of strain, «, shown in
Figure 2, can also be evaluated on a time scale as
indicated in Figure 5 by noting that the time, t, to
reach a given strain, «, can be evaluated from the
characteristic strain rate, «̇i, as

t 5
«

«̇i
(14)

Figure 3 Relative yield strains («1/«y) and relative secondary strain extrema («2/«y)
versus K«y.
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Therefore, any strain, «, in Figure 2 can be con-
verted to a time, t, in Figure 5 if the associated
strain rate, «̇i, is known. Also note that the yield
strain, «y, and the time to yield, ty, are also related
by a characteristic strain rate, «̇i, as

ty 5
«y

«̇i
(15)

Substituting for «y from eq. (1) gives

ty 5
«` 1 a«̇i

«̇i
(16)

Substituting eq. (16) into eq. (13) then gives

sy 5 bS «̇i

«` 1 a«̇i
Dn

(17)

Equation (17) can then be substituted into eq. (8)
to give

s 5 bS «̇i

«` 1 a«̇i
Dn

@K« 1 A2~K«!2 1 A3~K«!3# (18)

Based on eqs. (17) and (18), it is apparent that
any tensile stress, s, associated with a specific
strain value, «, including the yield strength, sy,
will increase with an increase in the strain rate,
«̇i. However, the strain to yield, «y, based on eq.
(1), is only mildly sensitive to the strain rate and
is allowed to either increase or decrease slightly
with an increase in the strain rate, «̇i. As indi-
cated previously, these results are more consis-
tent with the available data in the literature than
is the approach suggested by Brown as discussed
earlier.

However, it is interesting to address the case
that exists at long times, t, or using eq. (18) at
very low elongation rates, «̇i. For this case, note
that the yield stress, «y, approaches a limiting
value, «`:

«y 5 «` 1 a«̇i 3 «` as «̇i 3 0

Figure 4 Relative yield stress (s1/sy) and relative secondary stress extrema (s2/sy)
versus K«y.
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For this case, the constants A2 and A3 also ap-
proach the following values:

A2 5
~3 2 2K«`!

K2«`
2 (19)

A3 5
~K«` 2 2!

K3«`
3 (20)

and eq. (18) reduces to

s 5 bS «̇i

«`
Dn

@K« 1 A2~K«!2 1 A3~K«!3# (21)

Combining eqs. (14) and (21) gives

s 5 bS «

«`
DnS 1

tnD @K« 1 A2~K«!2 1 A3~K«!3# (22)

Again, it should be noted that eqs. (21) and (22)
apply only to the condition where the yield strain,
«y, approaches its limiting value of «` as a result
of the strain rate, «̇i, approaching zero. However,

as will be indicated shortly, both eqs. (21) and (22)
can be extremely helpful when trying to address
either creep or stress relaxation at very low strain
rates, «̇i, or a very long times, t.

In general, eqs. (1), (8)–(10), (17), and (18) can
then be used to describe a complete series of uni-
axial constant strain-rate curves for a given poly-
mer formulation and/or processing condition as
indicated in Figure 2. For reference, all the con-
stant strain-rate curves in Figure 2 were gener-
ated using eq. (18) with the following typical pa-
rameters for an ABS-type polymeric material K
5 58, «` 5 0.04, a 5 0.001 min, b 5 4990 psi, and
n 5 0.21. In addition, eqs. (1), (8)–(10), (17), and
(18) can also be used to evaluate stress-relaxation
and creep processes as will be indicated in the
next two sections.

Stress-relaxation Analysis

Stress relaxation is defined as the time-depen-
dent decay of stress in a viscoelastic material
under a sustained and constant level of strain. As
indicated in Figure 2, a stress-relaxation curve at

Figure 5 Calculated stress versus time at different strain rates using model from this
study with indications of examples for creep and stress-relaxation contributions.
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a specific strain can be described from a series of
points at the same strain level collected from sev-
eral different constant strain-rate curves. By con-
necting these same points as shown in Figure 5, it
is easy to see that this series of points forms a
stress-relaxation curve as a function of time.
However, to initiate such a stress-relaxation pro-
cess, the strain must first be increased to the
desired level, «R, before the stress-relaxation pro-
cess can begin. Equation (18) can then be used to
generate this stress, s, versus strain, «, curve at a
specific strain rate, «̇i, until the desired level of
strain, «R, is achieved from which stress relax-
ation will be initiated. Once the desired strain
level, «R, has been reached, then eq. (18) needs to
be used at a constant level of strain, «R, to predict
the associated levels of stress for this stress-re-
laxation process as a function of time:

sR 5 bS «̇i

«` 1 a«̇i
Dn

@K«R 1 A2~K«R!2 1 A3~K«R!3#

(23)

After the desired strain level, «R, has been
achieved, then successive stress values for the
stress-relaxation process can be developed by
identifying the appropriate stress on successive
stress–strain curves that corresponds to the de-
sired level of strain, «R, being evaluated. At this
point, each constant strain-rate curve can be used
to generate only one stress level, sR, at a given
strain level, «R, on the stress-relaxation curve as
indicated in Figure 2. Since each constant strain-
rate curve can be described by eq. (23), then this
equation can be used to calculate the stress, sR, at
the desired strain, «R, and at the characteristic
strain rate of «̇i being addressed. Note that for a
stress-relaxation process both the yield strain, «y,
and the yield strength, sy, are only functions of
the strain rate, «̇i, as indicated in eqs. (1) and (17).
Also note that the relaxation time, tR, accumu-
lated for a specific relaxation strain, «R, at a spe-
cific strain rate, «̇i, can be calculated directly from
eq. (14). Therefore, at a constant relaxation strain
level, «R, the stress-relaxation values for a series
of stress levels, sR, and their associated relax-
ation time, tR, can be calculated from a series of
stress–strain curves. The locus of these points
involving calculated values of stress, sR, and as-
sociated times, tR, then constitutes the stress-
relaxation curve. All these points are conve-
niently described by eq. (23), which then allows
the stress-relaxation curve to be generated.

Also note that long relaxation times, tR, are
characterized by very small strain-rate values, «̇i.
In particular, at long relaxation times, tR, and
very small strain-rate values, «̇i, the elongation to
yield, «y, approaches the constant value, «`, and
the values of A2 and A3 in eq. (24) also approach
values that do not change with an increase in
time. This condition was previously shown to re-
sult in eq. (22), which can then be modified for
stress-relaxation measurements as

sR 5 bS«R

«`
DnS 1

tR
nD @K«R 1 A2~K«R!2 1 A3~K«R!3#

(24)

At long times, then, all the variables in eq. (24)
are constants except the relaxation stress, sR,
and the relaxation time, tR. Equation (24) can
then easily generate the remainder of the stress-
relaxation curve at the desired relaxation times, tR.

Using the formulation concepts discussed in
this article, Figure 6 illustrates the initial phase
of a stress-relaxation test beginning with the con-
stant strain-rate component of this configuration
followed by the more typical stress-relaxation
process. Of particular interest is the observation
that different phases of the curve in Figure 6
generate straight lines when plotted on a log–log
scale as indicated in Figure 7. Note in Figure 7
that these stress-relaxation results can be de-
scribed over a much larger time scale in a very
convenient fashion. Of even more importance is
the convenient and straightforward fashion in
which it was possible to shift from a constant
strain-rate configuration to a stress relaxation
without changing formulation considerations.
This approach should be very convenient for fi-
nite-element analysis evaluations.

Creep-curve Generation

Creep is defined as the time-dependent increase
in strain of a viscous or viscoelastic material un-
der sustained and constant stress. Again, as indi-
cated in Figure 2, a creep curve can be developed
from an identification of the strain at a series of
points at the same stress level from a series of
constant strain-rate curves. However, initially,
the increase in stress to the level from which the
creep curve can be initiated must be simulated.
Typically, the simplest simulation approach can
be achieved from a constant strain-rate process
that can be used to achieve the desired level of
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unchanging stress, sC, from which the creep pro-
cess can begin. Similar to the case for stress re-
laxation, eq. (18) can then be used to generate this
stress, s, versus strain, «, curve at a specific
strain rate, «̇i, until the desired level of stress, sC,
is achieved from which a creep process can be
initiated.

Once the desired stress level, sC, has been
reached using a constant strain-rate approach,
then eq. (18) must be solved for the strain to give
a specific stress, sC, as the strain rate, «̇i, is con-
tinued to be decreased to get to longer creep
strains, «C, which can then be converted to creep
times, tC. Also, note that at a specific strain rate,
«̇i, the creep time, tC, accumulated for a creep
strain, «C, can be calculated directly from eq. (14).
The locus of points involving calculated values of
creep strain, «C, and the associated creep times,
tC, then constitutes the creep curve.

There are four potential ways then to calculate
creep strain, «C, using eq. (18) as a function of the
strain rate, «̇i, to longer creep times, tC. These
four options include 1. Solve eq. (18) as a cubic

equation to calculate the appropriate creep
strain, «C, at decreasing levels of strain rate, «̇i,
but at the desired creep stress level, sC. The creep
time, tC, accumulated for a specific creep strain,
«C, at a specific strain rate, «̇i, can then be calcu-
lated directly from eq. (14). 2. Solve eq. (18) using
a numerical method such as the Newton–Raph-
son method to calculate the appropriate creep
strain, «C, at a decreasing levels of strain rate, «̇i,
but at the desired creep stress level, sC. The creep
time, tC, accumulated for a specific creep strain,
«C, at a specific strain rate, «̇i, can then be calcu-
lated directly from eq. (14). 3. Solve eq. (18) as a
constant strain-rate evaluation for each strain
rate, «̇i, and then by solving eq. (18) by trial and
error for the creep strain, «C, that yields the de-
sired creep stress, sC. The creep time, tC, accumu-
lated for a specific creep strain, «C, at a specific
strain rate, «̇i, can then be calculated directly
from eq. (14). 4. Assuming the controlling strain
rates, «̇i, are very small after the constant level of
creep stress, sC, is achieved, and assuming the
relative insensitivity of the values of A2 and A3 to

Figure 6 Constant strain rate used to achieve desired strain followed by short-term
stress relaxation at 2% strain.
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the strain rate, then the creep curve can be cal-
culated by close approximation directly using eq.
(22) modified for creep to give

tc 5 S«c
«`
DS b

sc
D 1/n

@K«c 1 A2~K«c!
2 1 A3~K«c!

3#1/n

(25)

By setting the creep stress, sC, to a constant
value, then the creep time, tC, can be calculated as
a function of creep strain, «C, using eq. (25).

While method 3 appears to be very time-con-
suming, it can actually be relatively fast using a
spreadsheet software such as MS Excel. This ap-
proach was also found to be particularly useful as
the yield condition for creep or the inception of
tertiary creep was approached and exceeded. If
Option 3 is used, eq. (18) is first applied at a
constant strain rate to increase the stress and
associated strain until the desired stress level has

been achieved. After the desired stress level has
been reached, the successive strain values for the
creep process can be developed by identifying the
appropriate strain on successive stress–strain
curves that corresponds to the desired level of
stress being evaluated. At this point, each con-
stant strain-rate curve can be used to generate
only one strain level at a given stress level on the
creep curve as indicated in Figure 2. Since each
constant strain-rate curve can be described by
eq. (18), then these equations can be used to
calculate the strain, «C, at the desired stress,
sC, and at the characteristic strain rate of «̇i

being addressed. Again, note that for a creep
process both the yield strain, «y, and the yield
strength, sy, are functions of only the strain
rate, «̇i, as indicated in eqs. (1) and (17). Also
note that the time, tC, for that specific strain,
«C, at a specific strain rate, «̇i, can be calculated
directly from eq. (14). Therefore, at a constant

Figure 7 Calculated plot of long-term stress relaxation at 2% strain for this new
model, showing the linear character of stress at both short and long times on a log–log
scale.
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stress level, sC, the creep curve for a series of
strain levels, «C, and their associated times, tC,
can be calculated from a series of constant
strain-rate stress–strain curves. The locus of
these calculated points then constitutes the
creep curve as indicated in Figure 8.

If the simplifying assumptions of Option 4 are
acceptable, the use of eq. (25) allows the simplest
approach to generate all three phases of the creep
curve including primary, secondary, and tertiary
creep as indicated in both Figures 8 and 9. Ac-
cording to Thorkildsen,18 primary creep includes
all the initial changes in deformation prior to
secondary creep. The first region of creep after
primary creep that shows a linear increase in
strain with time is called secondary creep. Ter-
tiary creep is the final stage of creep and this
stage of creep is often correlated with the yield
point in making constant strain-rate measure-
ments. Interestingly, it is easy to show with the

model presented here that the yield point and the
inception of tertiary creep are essentially mani-
festations of the same phenomena. In particular,
if the strain to yield is assumed to be nearly a
constant at very low crosshead speeds or at long
creep times, then the strain to yield is essentially
the same as is the strain at the inception of ter-
tiary creep. Since the yield point for constant
strain-rate data is considered in some circles to be
at least one condition for failure in a polymer or
polymer compound, then one potential failure
condition for creep would be expected to begin at
the inception of tertiary creep.

Using the formulation concepts to calculate
creep as discussed in this article, the initial phase
of a creep test begins with the constant strain-
rate component followed by the more typical creep
process as indicated in Figures 8 and 9. Of par-
ticular interest is the observation that the three
different phases of the creep curve in Figure 8

Figure 8 Calculated constant strain rate until desired stress (300 psi) was reached
followed by creep strain versus time and showing all three phases of creep.

538 SUDDUTH



plot as straight lines when plotted on a log scale
as indicated in Figure 9. Also, the creep results in
Figure 9 have been described over a much larger
time scale in a very convenient fashion. In addi-
tion, note in Figure 9 that both Options 3 and 4
give the same creep curve up until the inception of
tertiary creep. At this point, there is a jump in the
data using Option 3, but the results for Option 4
were essentially continuous over this same strain
range. Beyond the yield strain or the inception of
tertiary creep, both Options 3 and 4 gave approx-
imately the same results but with some minor
differences. While Option 4 yields much more con-
tinuous calculated results in this region, it has
been found that both Options 3 and 4 predict a
satisfactory value for the inception of tertiary
creep.

CONCLUSIONS

This study has introduced a new unifying math-
ematical model to estimate creep, stress-relax-

ation, and/or constant strain evaluations as re-
quired for a given application for a viscoelastic
and/or polymeric material. This new concept is
especially significant since it adequately de-
scribes all the important characteristics of both
creep and stress relaxation in the same model. In
particular, all three phases of creep (i.e., primary,
secondary, and tertiary) can be described ade-
quately using this model. In addition, if the strain
to yield at constant strain rates is assumed to be
nearly a constant at very low crosshead speeds or
at long creep times, then the strain to yield is
essentially the same as the strain to the inception
of tertiary creep. Thus, the model presented here
clearly indicates that the yield point for constant
strain-rate measurements and the inception of
tertiary creep appear to be essentially manifesta-
tions of the same phenomena. Also, the initial
buildup of stress followed by a drop off in stress as
a function of time for stress relaxation is also
adequately described by this model. This new
model also offers a reasonably simple process in
which to shift from a constant strain-rate config-

Figure 9 Calculated plot of long-term creep at 300 psi stress showing the linear
character of strain at both short and long times on a log–log scale.
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uration to a creep configuration or to a stress-
relaxation configuration without changing formu-
lation considerations. Most importantly, this
model can be used to make a transition from one
of these modes of stress configuration to another
without any discontinuity in the stress or strain
calculations. It is hoped that this analysis ap-
proach will open new doors for the design of plas-
tic products for both short-term and long-term
applications. It is expected that this approach
should also be particularly convenient to intro-
duce time influences for viscoelastic materials in
finite-element analysis evaluations.
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APPENDIX: THREE CONSTANT
MECHANICAL PROPERTY MODEL
MODIFICATION WHEN K«Y > 3

If K«y . 3, then, mathematically, it can be shown
that the model presented in this article must be
rewritten in the form

s

sy
5 A4@K« 1 A2~K«!2 1 A3~K«!3# (A.1)

where

K 5
A1E
sy

(A.2)

A2 5
~3 2 2K«c!

K2«c
2 (A.3)

A3 5
~K«c 2 2!

K3«c
3 (A.4)

A4 5 S 27~K«c 2 2!2

K2«c
2~4K«c 2 9!D (A.5)

The two extrema are then identified as a maxima
at

s1 5 sy at «1 5 «y (A.6)

and a minimum at

s2 5 syS 27~K«c 2 2!2

K2«c
2~4K«c 2 9!D at «2 5 «c

5
3K«y 1 Î~3K«y!

2 2 24K«y

2K (A.7)
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